Manipulation of pH Shift to Enhance the Growth and Antibiotic Activity of Xenorhabdus nematophila

نویسندگان

  • Yonghong Wang
  • Xiangling Fang
  • Yongpeng Cheng
  • Xing Zhang
چکیده

To evaluate the effects of pH control strategy on cell growth and the production of antibiotic (cyclo(2-Me-BABA-Gly)) by Xenorhabdus nematophila and enhance the antibiotic activity. The effects of uncontrolled- (different initial pH) and controlled-pH (different constant pH and pH-shift) operations on cell growth and antibiotic activity of X. nematophila YL00I were examined. Experiments showed that the optimal initial pH for cell growth and antibiotic production of X. nematophila YL001 occurred at 7.0. Under different constant pH, a pH level of 7.5 was found to be optimal for biomass and antibiotic activity at 23.71  g/L and 100.0  U/mL, respectively. Based on the kinetic information relating to the different constant pH effects on the fermentation of X. nematophila YL001, a two-stage pH control strategy in which pH 6.5 was maintained for the first 24  h, and then switched to 7.5 after 24  h, was established to improve biomass production and antibiotic activity. By applying this pH-shift strategy, the maximal antibiotic activity and productivity were significantly improved and reaching 185.0  U/mL and 4.41  U/mL/h, respectively, compared to values obtained from constant pH operation (100.0  U/mL and 1.39  U/mL/h).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila

BACKGROUND Xenocoumacin 1 (Xcn1) and Xenocoumacin 2 (Xcn2) are the main antimicrobial compounds produced by Xenorhabdus nematophila. Culture conditions, including pH, had remarkably distinct effects on the antimicrobial activity of X. nematophila. However, the regulatory mechanism of pH on the antimicrobial activity and antibiotic production of this bacterium is still lacking. RESULTS With th...

متن کامل

Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production.

Xenorhabdus nematophila is a gammaproteobacterium and broad-host-range insect pathogen. It is also a symbiont of Steinernema carpocapsae, the nematode vector that transports the bacterium between insect hosts. X. nematophila produces several secreted enzymes, including hemolysins, lipases, and proteases, which are thought to contribute to virulence or nutrient acquisition for the bacterium and ...

متن کامل

Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.

Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors ...

متن کامل

Physiological Constants of the Entomopathogenic Bacterium Xenorhabdus nematophila Determined by Microbial Growth Kinetics

Xenorhabdus nematophila, an entomopathogenic bacterium that symbiotically associates with the entomoparasitic nematode Steinernema carpocapsae, was studied to determine its physiological parameters of glucose utilization. X. nematophila was cultured in chemically defined media containing various concentrations of glucose under optimal conditions utilizing a two-liter fermentation system. Specif...

متن کامل

The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes.

Members of the Steinernema genus of nematodes are colonized mutualistically by members of the Xenorhabdus genus of bacteria. In nature, Steinernema carpocapsae nematodes are always found in association with Xenorhabdus nematophila bacteria. Thus, this interaction, like many microbe-host associations, appears to be species specific. X. nematophila requires the nilA, nilB, and nilC genes to colon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011